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Abstract 

Background: Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting 
Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in 
clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization 
methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image 
features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on 
discriminative brain regions predefined by prior knowledge.

Methods: We trained a CNN for the detection of AD in N = 663 T1‑weighted MRI scans of patients with dementia 
and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross‑validation and in 
three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and 
hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we imple‑
mented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection.

Results: Across the three independent datasets, group separation showed high accuracy for AD dementia ver‑
sus controls (AUC  ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC  ≈ 0.74). Relevance maps 
indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional 
contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were 
highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001).
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Introduction
Alzheimer’s disease (AD) is characterized by wide-
spread neuronal degeneration, which manifests mac-
roscopically as cortical atrophy that can be detected 
in  vivo using structural magnetic resonance imaging 
(MRI) scans. Particularly at earlier stages of AD, atro-
phy patterns are relatively regionally specific, with vol-
ume loss in the medial temporal lobe and particularly 
the hippocampus. Therefore, hippocampus volume is 
currently the best-established MRI marker for diag-
nosing Alzheimer’s disease at the dementia stage as 
well as at its prodromal stage amnestic mild cognitive 
impairment (MCI) [1, 2]. Automated detection of sub-
tle brain changes in early stages of Alzheimer’s disease 
could improve diagnostic confidence and early access 
to intervention [1, 3].

Convolutional neural networks (CNNs) provide a 
powerful method for image recognition. Various stud-
ies have evaluated the performance of CNNs for the 
detection of Alzheimer’s disease in MR images with 
promising results regarding both separation of diagnos-
tic groups and the prediction of conversion from MCI 
to manifest dementia. Despite the high accuracy levels 
achieved by CNN models, a major drawback is their 
algorithmic complexity, which renders them black-box 
systems. The poor intuitive comprehensibility of CNNs 
is one of the major obstacles which hinder the clinical 
application.

Novel methods for deriving relevance maps from 
CNN models [4, 5] may help to overcome the black-
box problem. In general, relevance or saliency maps 
indicate the amount of information or contribution of 
a single input feature on the probability of a particu-
lar output class. Previous methodological approaches 
like gradient-weighted class activation mapping (Grad-
CAM) [6], occlusion sensitivity analyses [7, 8], and 
local interpretable model-agnostic explanations (LIME) 
[9] had the limitation that deriving the relevance or 
saliency maps provided only group-average estimates, 
required long runtime [10], or provided only low spa-
tial resolution [11, 12]. In contrast, more recent meth-
ods such as guided backpropagation [13] or layer-wise 

relevance propagation (LRP) [4, 5] use back-tracing of 
neural activation through the network paths to obtain 
high-resolution relevance maps.

Recently, three studies compared LRP with other 
CNN visualization methods for the detection of Alzhei-
mer’s disease in T1-weighted MRI scans [11, 12, 14]. The 
derived relevance maps showed the strongest contribu-
tion of medial and lateral temporal lobe atrophy, which 
matched the a priori expected brain regions of high 
diagnostic relevance [15, 16]. These preliminary findings 
provided the first evidence that CNN models and LRP 
visualization could yield reasonable relevance maps for 
individual people. We investigated whether this approach 
could be used as the basis for neuroradiological assis-
tance systems to support the examination and diagnos-
tic evaluation of MRI scans. Furthermore, we wanted to 
develop a data-driven and hypothesis-free CNN mod-
eling approach that is capable of automatically deriving 
discriminative features and, therefore, might support 
complex diagnostic tasks where clear clinical criteria are 
still missing such as the differential diagnosis of various 
types of dementia.

In the current study, our aims were threefold: First, we 
trained robust CNN models that achieved a high diag-
nostic accuracy in three independent validation samples. 
Second, we developed a visualization software to interac-
tively derive and inspect diagnostic relevance maps from 
CNN models for individual patients. Here, we expected 
high relevance to be shown in brain regions with strong 
disease-related atrophy, primarily in the medial tem-
poral lobe. Third, we evaluated the validity of relevance 
maps in terms of correlation of hippocampus relevance 
scores and hippocampus volume, which is the best-estab-
lished MRI marker for Alzheimer’s disease [15, 16]. We 
expected a high consistency of both measures, which 
would strengthen the overall comprehensibility of the 
CNN models.

State of the art
Neural network models to detect Alzheimer’s disease
An overview of neuroimaging studies which applied 
neural networks in the context of AD is provided in 

Conclusion: The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens 
the comprehensibility of the CNN models, which were trained in a purely data‑driven manner based on the scans 
and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independ‑
ent samples support the validity of the CNN models in the detection of AD‑related MRI abnormalities. The presented 
data‑driven and hypothesis‑free CNN modeling approach might provide a useful tool to automatically derive discrimi‑
native features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential 
diagnosis between various types of dementia.

Keywords: Alzheimer’s disease, Deep learning, Convolutional neural network, MRI, Layer‑wise relevance propagation
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Table  1. We focused on the aspects whether the stud-
ies used independent validation samples to assess the 
generalizability of their models and whether they eval-
uated which image features contributed to the models’ 
decision. Studies reported very high classification per-
formances to differentiate AD dementia patients and 
cognitively healthy participants, typically with accura-
cies around 90% (Table  1). For the separation of MCI 
and controls, accuracies were substantially lower rang-
ing between 75 and 85%. However, there is a high varia-
tion of the accuracy levels depending on various factors 
such as (i) differences in diagnostic criteria across sam-
ples, (ii) included data types, (iii) differences in image 
preprocessing procedures, and (iv) differences between 
machine learning methods [27].

CNN performance estimation and model robustness 
are still open challenges. Wen and colleagues [27] actually 
showed only a minor effect of the particular CNN model 
parameterization or network layer configuration on the 
final accuracy, which means that the fully trained CNN 
models achieved almost identical performance. Different 
CNN approaches exist for MRI data [27] based on (i) 2D 
convolutions for single slices, often reusing pre-trained 
models for general image detection, such as AlexNet [29] 
and VGG [30]; (ii) so-called 2.5D approaches running 
2D convolutions on each of the three slice orientations, 
which are then combined at higher layers of the network; 
and (iii) 3D convolutions, which are at least theoreti-
cally superior in detecting texture and shape features in 
any direction of the 3D volume. Although final accuracy 
is almost comparable between all three approaches for 
detecting MCI and AD [27], the 3D models require sub-
stantially more parameters to be estimated during train-
ing. For instance, a single 2D convolutional kernel has 3 
× 3 = 9 parameters whereas the 3D version requires 3 × 
3 × 3 = 27 parameters. Here, relevance maps and related 
methods enable the assessment of learnt CNN models 
with respect to overfitting to clinically irrelevant brain 
regions and the detection of potential biases present in 
the training samples, which cannot be directly identified 
just from the model accuracy.

Approaches to assess model comprehensibility
In the literature, the most often applied methods to 
assess model comprehensibility and sensitivity were (i) 
the visualization of model weights, (ii) occlusion sen-
sitivity analysis, and (iii) more advanced CNN methods 
such as guided backpropagation or LRP (Table 1). Nota-
bly, studies using approaches i and ii showed visualiza-
tions characterizing the whole sample or group averages. 
In contrast, studies applying iii also presented relevance 
maps for single participants [11, 14].

Böhle and colleagues [14] pioneered the application 
of LRP in neuroimaging and reported a high sensitivity 
of this method to actual regional atrophy. Eitel and col-
leagues [12] assessed the stability and reproducibility of 
CNN performance results and LRP relevance maps. After 
training ten individual models based on the same training 
dataset, they reported the highest consistency and lowest 
deviation of relevance maps for LRP and guided back-
propagation among five different methods [12]. Recently, 
we compared various methods for relevance and saliency 
attribution [11]. Visually, all tested methods provided 
similar relevance maps except for Grad-CAM, which 
provided much lower spatial resolution, and, hence, lost 
a high amount of regional specificity. For the other meth-
ods, the main difference was the amount of “negative” 
relevance which indicates evidence against a particular 
diagnostic class. Notably, [12, 14] did not include patients 
in the prodromal stage of MCI and [11] focused on a lim-
ited range of coronal slices covering the temporal lobe. 
All three studies did not validate their results in inde-
pendent samples.

Materials and methods
Study samples
Data for training the CNN models were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (https:// adni. loni. usc. edu). The ADNI was 
launched in 2003 by the National Institute on Aging, 
the National Institute of Biomedical Imaging and Bio-
engineering, the Food and Drug Administration, private 
pharmaceutical companies, and non-profit organizations, 
with the primary goal of testing whether neuroimaging, 
neuropsychological, and other biological measurements 
can be used as reliable in vivo markers of Alzheimer’s dis-
ease pathogenesis. A complete description of ADNI, up-
to-date information, and a summary of diagnostic criteria 
are available at https:// www. adni- info. org. We selected a 
sample of N = 663 participants from the ADNI-GO and 
ADNI-2 phases, based on the availability of concurrent 
T1-weighted MRI and amyloid AV45-PET scans. Nota-
bly, we used only one (i.e., the first) available scan from 
each ADNI participant in our analyses. The sample char-
acteristics are shown in Table 2. We included 254 cogni-
tively normal controls, 220 patients with (late) amnestic 
mild cognitive impairment (MCI), and 189 patients with 
Alzheimer’s dementia (AD). Amyloid-beta status of the 
participants was determined by the UC Berkeley [31] 
based on the AV45-PET standardized uptake value ratio 
(SUVR) cutoff 1.11.

For validation of the diagnostic accuracy of the CNN 
models, we obtained MRI scans from three independ-
ent cohorts. The sample characteristics and demo-
graphic information are summarized in Table  2. The 

https://adni.loni.usc.edu
https://www.adni-info.org
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first dataset was compiled from N = 575 participants of 
the recent ADNI-3 phase. The second dataset included 
MR images from N = 606 participants of the Australian 
Imaging, Biomarker & Lifestyle Flagship Study of Age-
ing (AIBL) (https:// aibl. csiro. au), provided via the ADNI 
system. A summary of the diagnostic criteria and addi-
tional information is available at https:// aibl. csiro. au/ 
about. For AIBL, we additionally obtained amyloid PET 
scans which were available for 564 participants (93%). 
The PET scans were processed using the Centiloid SPM 
pipeline and converted to Centiloid values as recom-
mended for the different amyloid PET traces [32–34]. 
Amyloid-beta status of the participants was determined 
using the cutoff 24.1 CL [33]. As a third sample, we 
included data from N = 474 participants of the German 
Center for Neurodegenerative Diseases (DZNE) multi-
center observational study on Longitudinal Cognitive 
Impairment and Dementia (DELCODE) [35]. Compre-
hensive information on the diagnostic criteria and study 
design are provided in [35]. For the DELCODE sample, 
cerebrospinal fluid (CSF) biomarkers were available for 
a subsample of 227 participants (48%). Amyloid-beta 
status was determined using the Aβ42/Aβ40 ratio with 
a cutoff 0.09 [35].

Image preparation and processing
All MRI scans were preprocessed using the Computa-
tional Anatomy Toolbox (CAT12, v9.6/r7487) [36] for 
Statistical Parametric Mapping 12 (SPM12, v12.6/r1450, 
Wellcome Centre for Human Neuroimaging, London, 
UK). Images were segmented into gray and white matter, 
spatially normalized to the default CAT12 brain template 
in Montreal Neurological Institute (MNI) reference space 
using the DARTEL algorithm, resliced to an isotropic 
voxel size of 1.5 mm, and modulated to adjust for expan-
sion and shrinkage of the tissue. Initially and after all pro-
cessing steps, all scans were visually inspected to check 
for image quality. In all scans, effects of the covariates age, 
sex, total intracranial volume (TIV), and scanner mag-
netic field strength (FS) were reduced using linear regres-
sion. This step was performed, as these factors are known 
to affect the voxel intensities or regional brain volume [37, 
38]. For each voxel vxij, linear models were fitted on the 
healthy controls:

with i being the voxel index, j being the healthy partici-
pant index, βi being the respective model coefficients (for 
each voxel), and εi being the error term or residual. Sub-
sequently, the predicted voxel intensities were subtracted 
from all participants’ gray matter maps to obtain the resid-
ual images:

(1)
vxij = βi0 + βi1agej + βi2sexj + βi3TIV j + βi4FSj + εij

Table 2 Summary of sample characteristics

Numbers indicate mean and standard deviation (SD) if not indicated otherwise. 
Years of education were not available for the AIBL dataset. RAVLT Delayed recall 
scores were not available for the AIBL and DELCODE samples

CN cognitively normal controls, MCI amnestic mild cognitive impairment, 
AD Alzheimer’s dementia, SD standard deviation, MMSE Mini Mental State 
Examination, RAVLT Rey Auditory Verbal Learning Test, WMS-LM Wechsler 
Memory Scale Logical Memory Test, MRI magnetic resonance imaging

Sample CN MCI AD

ADNI-GO/2 (training) N = 663
 Sample size (female) 254 (130) 220 (93) 189 (80)

 Age (SD) 75.4 (6.6) 74.1 (8.1) 75.0 (8.0)

 Education (SD) 16.4 (2.7) 16.2 (2.8) 15.9 (2.7)

 MMSE (SD) 29.1 (1.2) 27.6 (1.9) 22.6 (3.2)

 RAVLT Delayed recall (SD) 7.6 (4.1) 3.2 (3.7) 0.8 (1.9)

 WMS‑LM Delayed recall (SD) 13.9 (3.7) 5.1 (3.8) 1.5 (2.1)

 Hippocampus volume (SD) 
 mm3

6235 (756) 5619 (963) 4834 (930)

 Amyloid status (neg/pos) 177/77 79/141 28/161

MRI field strength (1.5T/3T) 71/183 49/171 35/154

ADNI-3 (validation) N = 575
 Sample size (female) 326 (211) 187 (85) 62 (27)

 Age (SD) 70.0 (7.5) 72.2 (7.5) 74.8 (7.7)

 Education (SD) 16.6 (2.2) 16.6 (2.5) 16.5 (2.4)

 MMSE (SD) 29.1 (1.1) 27.8 (2.0) 23.1 (3.3)

 RAVLT Delayed recall (SD) 8.3 (4.4) 4.7 (4.7) 0.3 (0.9)

 WMS‑LM Delayed recall (SD) 13.0 (3.5) 7.2 (3.9) 2.0 (2.8)

 Hippocampus volume (SD) 
 mm3

6583 (649) 6112 (902) 4839 (978)

 Amyloid status (neg/pos) 75/39 19/27 3/17

 MRI field strength (1.5T/3T) 0/326 0/187 0/62

AIBL (validation) N = 606
 Sample size (female) 448 (260) 96 (46) 62 (36)

 Age (SD) 72.4 (6.2) 74.3 (6.9) 73.2 (7.3)

 MMSE (SD) 28.7 (1.2) 27.0 (2.2) 21.2 (5.3)

 WMS‑LM Delayed recall (SD) 11.2 (4.3) 4.9 (4.0) 1.0 (1.9)

 Hippocampus volume (SD) 
 mm3

6362 (704) 5712 (1028) 4940 (1055)

 Amyloid status (neg/pos) 316/101 34/54 6/53

 MRI field strength (1.5T/3T) 55/393 7/89 2/60

DELCODE (validation) N = 474
 Sample size (female) 215 (124) 155 (72) 104 (61)

 Age (SD) 69.5 (5.5) 73.0 (5.7) 75.2 (6.2)

 Education (SD) 14.7 (2.7) 14.0 (3.1) 12.9 (3.1)

 MMSE (SD) 29.5 (0.8) 27.8 (2.0) 23.1 (3.2)

 WMS‑LM Delayed recall (SD) 14.3 (3.6) 7.4 (5.2) 1.8 (2.8)

 Hippocampus volume (SD) 
 mm3

6543 (679) 5665 (950) 4610 (944)

 Amyloid status (neg/pos) 58/28 30/57 5/49

 MRI field strength (1.5T/3T) 0/215 0/155 0/104

https://aibl.csiro.au/
https://aibl.csiro.au/about/
https://aibl.csiro.au/about/
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Notably, we performed the estimation process (1) 
only for the healthy ADNI-GO/2 participants. Then, 
(2) was applied to all other participants and the valida-
tion samples. This method was applied as brain volume, 
specifically in the temporal lobe and hippocampus, is 
substantially decreasing/shrinking in old age indepen-
dently of the disease process [37, 38], and we expected 
this approach to increase accuracy. As sensitivity analy-
sis, we also repeated CNN training on the raw gray mat-
ter volume maps for comparison. Patients with MCI and 
AD were combined into one disease-positive group. On 
the one hand, this was done as we observed a low sensi-
tivity of machine learning models for MCI when trained 
only on AD cases, due to the much larger and more 
heterogeneous patterns of atrophy in AD than in MCI, 
where atrophy is specifically present in medial temporal 
and parietal regions [39]. On the other hand, combining 
both groups substantially increased the training sample, 
which was required to reduce the overfitting of the CNN 
models.

CNN model structure and training
The CNN layer structure was adapted from [14, 27], 
which was inspired by the prominent 2D image detection 
networks AlexNet [29] and VGG [30]. The model was 
implemented in Python 3.7 with Keras 2.2.4 and Ten-
sorflow 1.15. The layout is shown in Fig.  1. The residu-
alized/raw 3D images with a resolution of 100 × 100 
× 120 voxels were fed as input into the neural network 
and processed by three consecutive convolution blocks 
including 3D convolutions (5 filters of 3 × 3 × 3 kernel 
size) with rectified linear activation function (ReLU), 

(2)
resij = vxij −

(

� i� + � i�agej + � i�sexj + � i�TIV j + � i�FSj

) maximum pooling (2 × 2 × 2 voxel patches), and batch 
normalization layers (Fig. 1). Then, three dropout (10%) 
and fully connected layers with ReLU activation followed, 
each consisting of 64, 32, and 2 neurons, respectively. 
The weights of last two layers were regularized with the 
L2 norm penalty. The last layer had the softmax activa-
tion function that rescaled the class activation values to 
likelihood scores. The network required approximately 
700,000 parameters to be estimated.

The whole CNN pipeline was evaluated by stratified 
tenfold cross-validation, partitioning the ADNI-GO/2 
sample into approximately 600 training and 60 test 
images with almost equal distribution of CN, MCI, and 
AD cases. Additionally, data augmentation was used. All 
images included in the respective training subsamples 
were flipped along the coronal (L/R) axis and also trans-
lated by ±10 voxels in each direction (x/y/z), yielding 
fourteen times increased number of samples per epoch 
of approximately 8350 images. The CNN model was then 
trained with the ADAM optimizer, applying the cat-
egorical cross-entropy loss function, the learning rate of 
0.0001, and a batch size of 20. As the training group sizes 
were imbalanced, we set class weights of 1.31 for con-
trols and 0.81 for MCI/AD in order to circumvent biased 
predictions. The weights were determined using the for-
mula 0.5n/ni as recommended in the TensorFlow tutorial 
[40]. To select the optimal models during training, we set 
the number of epochs to ten and saved the model state 
(epoch) which performed best on the test partition. On a 
Windows 10 computer with Intel Core i5-9600 hexa-core 
CPU, 64 GB working memory, and NVIDIA GeForce 
GTX 1650 CUDA GPU, training took approximately 35 
min per fold and 12 h in total. All ten models were saved 
to disk for further inspection and validation. As control 

Fig. 1 Data flow chart and convolutional neural network structure
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analysis, we also repeated the whole procedure based on 
the raw image data (normalized gray matter volumes) 
instead of using the residuals as CNN input. Here, we set 
the number of epochs to 20 due to slower convergence of 
the models.

We also trained CNN models on the whole ADNI-
GO/2 sample for further evaluation. Here, we fixed 
the number of epochs to 4 for the residualized data 
and 8 for the raw data. These values provided the high-
est average accuracy and lowest loss in the previous 
cross-validation.

Model evaluation
The balanced accuracy and area under the receiver oper-
ating characteristic curve (AUC ) were calculated for the 
independent validation samples. We report first the num-
bers for the model trained on the whole ADNI-GO/2 
dataset and second the average values for the models 
obtained via cross-validation.

As an internal validity benchmark, we compared 
CNN model performance and group separation using 
hippocampus volume, the best-established MRI 
marker for Alzheimer’s disease. Automated extrac-
tion of hippocampus volume is already implemented 
in commercial radiology software to aid physicians in 
diagnosing dementia. We extracted total hippocam-
pus volume from the modulated and normalized MRI 
scans using the Automated Anatomical Labeling (AAL) 
atlas [41]. The extracted volumes were corrected for the 
effects of age, sex, total intracranial volume, and mag-
netic field strength of the MRI scanner in the same way 
as described above for the CNN input (see the section 
“Image preparation and processing”). Here, a linear 
model was estimated based on the normal controls of 
the ADNI-GO/2 training sample, and then, the param-
eters were applied to the measures of all other partici-
pants and validation samples to obtain the residuals. 
Subsequently, the residuals of the training sample were 
entered into a receiver operating characteristic analy-
sis to obtain the AUC . The optimal threshold providing 
the highest accuracy was selected based on the Youden 
index. We obtained two thresholds. One for the sepa-
ration of MCI and controls, which was the residual 
volume of −0.63 ml. That means participants with the 
deviation of individual hippocampus volume from the 
expected value (for that age, sex, total brain volume, and 
magnetic field strength) below −0.63 ml were classi-
fied as MCI. The other threshold for AD dementia and 
controls was −0.95 ml. Additionally, we repeated the 
same cross-validation training/test splits as used for 
CNN training to compare the variability of the derived 
thresholds and performance measures.

CNN relevance map visualization
Relevance maps were derived from the CNN models 
using the LRP algorithm [4] implemented in the Python 
package iNNvestigate 1.0.9 [42]. LRP has previously been 
demonstrated to yield relevance maps with high spa-
tial resolution and clinical plausibility [11, 14]. In this 
approach, the final network activation scores for a given 
input image are propagated back through the network 
layers. LRP applies a relevance conservation principle 
that means that the total amount of relevance per layer 
is kept constant during the back-tracing procedure to 
reduce numerical challenges that occur in other methods 
[4]. Several rules exist, which apply different weighting 
to positive (excitatory) and negative (inhibitory) con-
nections such that network activation for and against a 
specific class can be considered differentially. Here, we 
applied the so-called α = 1, β = 0 rule that only considers 
positive relevance as proposed by [11, 14]. In this case, 
the relevance of a network neuron Rj was calculated from 
all connected neurons k in the subsequent network layer 
using the formula:

with aj being the activation of neuron j, w+

jk being the 
positive weight of the connection between neurons j and k, 
and Rk being the relevance attributed to neuron k [5]. As 
recent studies reported further improvements in LRP rele-
vance attribution [43, 44], we applied the LRP α = 1, β = 0 
composition rule that applies (3) to the convolutional lay-
ers, and the slightly extended ϵ rule [5] to the fully con-
nected layers. In the ϵ rule, (3) is being extended by a small 
constant term added to the denominator, i.e., ϵ =  10−10 in 
our case, which is expected to reduce relevance when the 
activation of neuron k is weak or contradictory [5].

To facilitate model assessment and quick inspection of 
relevance maps, we implemented an interactive Python 
visualization application that is capable of immediate 
switching between CNN models and participants. More 
specifically, we used the Bokeh Visualization Library 2.2.3 
(https:// bokeh. org). Bokeh provides a webserver backend 
and web browser frontend to directly run Python code 
that dynamically generates interactive websites contain-
ing various graphical user interface components and 
plots. The Bokeh web browser JavaScript libraries han-
dle the communication between the browser and server 
instance and translate website user interaction into 
Python function calls. In this way, we implemented vari-
ous visualization components to adjust plotting param-
eters and provide easy navigation for the 2D slice views 
obtained from the 3D MRI volume.

(3)Rj =

∑

k

ajw
+

jk
∑

j

(

ajw
+

jk

)Rk

https://bokeh.org
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The application is structured following a model–
view–controller paradigm. An overview of imple-
mented functions is provided in Supplementary Fig. 1. 
A sequence diagram illustrating function calls when 
selecting a new person is provided in Supplemen-
tary Fig.  2. The source code and files required to run 
the interactive visualization are publicly available via 
https:// github. com/ marti ndyrba/ DeepL earni ngInt eract 
iveVis.

As core functionality, we implemented the visualiza-
tion in a classical 2D multi-slice window with axial, cor-
onal, and sagittal views, cross-hair, and sliders to adjust 
the relevance threshold as well as minimum cluster size 
threshold (see Fig. 2). Here, a cluster refers to groups of 
adjacent voxels with high relevance above the selected 
relevance threshold. The cluster size is the number of 
voxels in this group and can be controlled in order to 
reduce the visual noise caused by single voxels with 
high relevance. Additionally, we added visual guides 
to improve usability, including (a) a histogram provid-
ing the distribution of cluster sizes next to the cluster 
size threshold slider, (b) plots visualizing the amount 
of positive and negative relevance per slice next to the 
slice selection sliders, and (c) statistical information on 
the currently selected cluster. Furthermore, assuming 
spatially normalized MRI data in MNI reference space, 

we added (d) atlas-based anatomical region lookup 
for the current cursor/cross-hair position and (e) the 
option to display the outline of the anatomical region 
to simplify visual comparison with the cluster location.

CNN model comprehensibility and validation
As quantitative metrics for assessing relevance map 
quality are still missing, we compared CNN relevance 
scores in the hippocampus with hippocampus volume. 
Here, we used the same AAL atlas hippocampus masks 
as for deriving hippocampus volume and applied it on 
the relevance maps obtained from all ADNI-GO/2 par-
ticipants for each model. The sum of relevance score 
of each voxel inside the mask was considered as hip-
pocampus relevance. Hippocampus relevance and 
volume were compared using Pearson’s correlation 
coefficient.

Additionally, we visually examined a large number of 
scans from each group to derive common relevance pat-
terns and match them with the original MRI scans. Fur-
thermore, we calculated mean relevance maps for each 
group. We also extracted the relevance for all lobes of 
the brain and subcortical structures to test the specific-
ity of relevance distribution across the whole brain. These 
masks were defined based on the other regions included 
in the AAL atlas [41].

Fig. 2 Web application to interactively examine the neural network relevance maps for individual MRI scans

https://github.com/martindyrba/DeepLearningInteractiveVis
https://github.com/martindyrba/DeepLearningInteractiveVis
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In an occlusion sensitivity analysis, we evaluated the 
influence of local atrophy on the prediction of the model 
and the derived relevance scores. Here, we slid a cube of 
20 voxels = 30 mm edge size across the brain. Within 
the cube, we reduced the intensity of the voxel by 50%, 
simulating gray matter atrophy in this area. We selected 
a normal control participant from the DELCODE dataset 
without visible CNN relevance, a prediction probability 
for AD/MCI of 20%, and hippocampus volume residual 
of 0 ml, i.e., the hippocampus volume matched the refer-
ence volume expected for this person. For each position 
of the cube, we derived the probability of AD predicted 
by the model obtained from the whole ADNI-GO/2 sam-
ple. Additionally, we calculated the total amount of rel-
evance in the scan.

Results
Group separation
The accuracy and AUC  for diagnostic group separation 
are shown in Table  3. Additional performance meas-
ures are provided in Supplementary Table  1. The CNN 
reached a balanced accuracy between 75.5 and 88.3% 
across validation samples with an AUC  between 0.828 
and 0.978 for separating AD dementia and controls. For 

MCI vs. controls, the group separation was substan-
tially lower with balanced accuracies between 63.1 and 
75.4% and an AUC  between 0.667 and 0.840. These val-
ues were only slightly better than the group separation 
performance of hippocampus volume (Table 3). The per-
formance results for the raw gray matter volume data 
as input for the CNN are provided in Supplementary 
Table 2. In direct comparison to the CNN results for the 
residualized data, the balanced accuracies and AUC  val-
ues did not show a clear difference (Table 3, Supplemen-
tary Table 2).

Model comprehensibility and relevance map visualization
The implemented web application frontend is displayed 
in Fig. 2. The source code is available at https:// github. 
com/ marti ndyrba/ DeepL earni ngInt eract iveVis and the 
web application can be publicly accessed at https:// 
expla inati on. net/ demo. In the left column, the user can 
select a study participant and a specific model. Below, 
there are controls (sliders) to adjust the thresholds 
for displayed relevance score, cluster size, and overlay 
transparency. As we used the spatially normalized MRI 
images as CNN input, we can directly obtain the ana-
tomical reference location label from the automated 

Table 3 Group separation performance for hippocampus volume and the convolutional neural network models

Reported values are for the single model trained on the whole ADNI-GO/2 dataset. In parenthesis, the mean values and standard deviation for the ten models trained 
in the tenfold cross-validation procedure are provided to indicate the variability of the measures. Values for the ADNI-GO/2 sample (in italics) may be biased as the 
respective test subsamples were used to determine the optimal model during training. We still report them for better comparison of the model performance across 
samples

Sample Hippocampus volume (residuals) 3D convolutional neural network

Balanced accuracy (mean ± SD) AUC Balanced accuracy (mean ± SD) AUC  (mean ± SD)

ADNI-GO/2
 MCI vs. CN (70.0% ± 6.8%) (0.773 ± 0.091) (74.5% ± 6.2%) (0.785 ± 0.078)

 AD vs. CN (84.4% ± 3.6%) (0.945 ± 0.024) (88.9% ± 5.3%) (0.949 ± 0.029)

  MCI+ vs.  CN− (75.6% ± 7.1%) (0.831 ± 0.080) (86.7% ± 10.3%) (0.925 ± 0.071)

  AD+ vs.  CN− (86.2% ± 4.2%) (0.954 ± 0.025) (94.9% ± 3.8%) (0.985 ± 0.017)

ADNI-3
 MCI vs. CN 62.8% (63.1% ± 1.4%) 0.683 63.1% (63.6% ± 1.5%) 0.684 (0.677 ± 0.020)

 AD vs. CN 83.4% (83.4% ± 0.4%) 0.917 84.4% (81.7% ± 2.9%) 0.913 (0.899 ± 0.013)

  MCI+ vs.  CN− 69.1% (69.2% ± 2.7%) 0.791 69.8% (68.3% ± 4.4%) 0.810 (0.742 ± 0.024)

  AD+ vs.  CN− 83.6% (82.0% ± 1.8%) 0.882 80.2% (75.5% ± 4.2%) 0.830 (0.828 ± 0.028)

AIBL
 MCI vs. CN 67.4% (67.6% ± 0.5%) 0.741 68.2% (67.3% ± 2.7%) 0.763 (0.749 ± 0.012)

 AD vs. CN 84.1% (85.3% ± 1.5%) 0.927 85.0% (82.3% ± 3.0%) 0.950 (0.926 ± 0.007)

  MCI+ vs.  CN− 78.5% (78.8% ± 0.9%) 0.874 75.4% (73.6% ± 3.1%) 0.828 (0.814 ± 0.022)

  AD+ vs.  CN− 87.2% (89.1% ± 2.4%) 0.976 88.3% (85.3% ± 3.3%) 0.978 (0.958 ± 0.011)

DELCODE
 MCI vs. CN 69.0% (69.0% ± 9.6%) 0.774 71.0% (69.7% ± 2.6%) 0.775 (0.772 ± 0.017)

 AD vs. CN 88.4% (86.4% ± 3.0%) 0.943 85.5% (80.5% ± 4.0%) 0.953 (0.938 ± 0.013)

  MCI+ vs.  CN− 77.4% (77.8% ± 0.7%) 0.867 72.2% (74.9% ± 3.5%) 0.840 (0.830 ± 0.017)

  AD+ vs.  CN− 88.2% (87.6% ± 1.8%) 0.954 83.3% (82.2% ± 4.0%) 0.968 (0.956 ± 0.012)

https://github.com/martindyrba/DeepLearningInteractiveVis
https://github.com/martindyrba/DeepLearningInteractiveVis
https://explaination.net/demo
https://explaination.net/demo
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anatomical labeling (AAL) atlas [41] given the MNI 
coordinates at the specific cross-hair location, which 
is displayed in the light blue box. The green box dis-
plays statistics on the currently selected relevance 
cluster such as number of voxels and respective vol-
ume. In the middle part of Fig. 2, the information used 
as covariates (age, sex, total intracranial volume, MRI 
field strength) and the CNN likelihood score for AD are 
depicted above the coronal, axial, and sagittal views of 
the 3D volume. We further added sliders and plots of 
cumulated relevance score per slices as visual guides to 
facilitate navigation to slices with high relevance. All 
user interactions are directly sent to the server, evalu-
ated internally, and updated in the respective views and 
control components in real-time without major delay. 
For instance, adjusting the relevance threshold directly 
changes the displayed brain views, the shape of the red 
relevance summary plots, and the blue cluster size his-
togram. A sequence diagram of internal function calls 
when selecting a new participant is illustrated in Sup-
plementary Fig. 2.

Individual people’s relevance maps are illustrated in 
Fig.  3. The group mean relevance maps for the DEL-
CODE validation sample are shown in Fig. 4 and those 
for the ADNI-GO/2 training sample in Supplementary 
Fig.  3. They are very similar to traditional statistical 
maps obtained from voxel-based morphometry, indi-
cating the highest contribution of medial temporal 
brain regions, more specifically the hippocampus, 
amygdala, thalamus, middle temporal gyrus, and mid-
dle/posterior cingulate cortex. Also, they were highly 
consistent between samples (Supplementary Fig.  3). 
The occlusion sensitivity analysis also showed identi-
cal brain regions’ atrophy to contribute to the model’s 
decision (Fig. 5). Interestingly, the occlusion relevance 
maps showed a ring structure around the most con-
tributing brain areas, indicating that relevance was 
highest when the occluded area just touched the sali-
ent regions, leading to a thinning-like shape of the 
gray matter.

The correlation of individual DELCODE participants’ 
hippocampus relevance score and hippocampus vol-
ume for the model trained on the whole ADNI-GO/2 
dataset is displayed in Fig.  6. For this model, the cor-
relation was r = −0.87 for bilateral hippocampus vol-
ume (p < 0.001). Across all ten models obtained using 
cross-validation, the median correlation of total hip-
pocampus relevance and volume was r = −0.84 with a 
range of −0.88 and −0.44 (all with p < 0.001). Cross-
validation models with higher correlation between hip-
pocampus relevance and volume showed a tendency 
for better AUC  values for MCI vs. controls (r = 0.61, 
p = 0.059). To test whether hippocampus volume and 

relevance measures were specific to the hippocam-
pus, we also compared the correlation between hip-
pocampus volume and other regions’ and whole-brain 
relevance. Here, the correlations were lower, with r = 
−0.62 (p < 0.001) between hippocampus volume and 
whole-brain relevance. More detailed results are pro-
vided as a correlation matrix in Supplementary Fig. 4.

Discussion
Neural network comprehensibility
We have presented a CNN framework and interactive 
visualization application for obtaining class-specific rel-
evance maps for disease detection in MRI scans, yielding 
human-interpretable and clinically plausible visualiza-
tions of key features for image discrimination. To date, 
most CNN studies focus on model development and 
optimization, which are undoubtedly important tasks 
and there are still several challenges to tackle. However, 
as black-box models, it is typically not feasible to judge, 
why a CNN fails or which image features drive a particu-
lar decision of the network. This gap might be closed with 
the use of novel visualization algorithms such as LRP [4] 
and deep Taylor decomposition [5]. In our application, 
LRP relevance maps provided a useful tool for model 
inspection to reveal the brain regions which contributed 
most to the decision process encoded by the neural net-
work models.

Currently, there is no ground truth information for 
relevance maps, and there are no appropriate meth-
ods available to quantify relevance map quality. Samek 
and colleagues [45] proposed the information-theoretic 
measures relevance map entropy and complexity, which 
mainly characterize the scatter or smoothness of images. 
Furthermore, adapted from classical neural network 
sensitivity analysis, they assessed the robustness of rele-
vance maps using perturbation testing where small image 
patches were replaced by random noise, which was also 
applied in [46]. Already for 2D data, this method is com-
putationally very expensive and only practical for a lim-
ited number of input images. Instead of adding random 
noise, we simulated gray matter atrophy by lowering the 
image intensities by 50% in a cube-shaped area. As visible 
from Fig.  5, the brain areas contributing to the model’s 
AD probability nicely matched the areas shown in the 
mean relevance maps (Fig.  4). Notably, the ring-shaped 
increase in relevance around the salient regions (Fig.  5, 
bottom) indicates that the model is sensitive to intensity 
jumps occurring when the occlusion cube touches the 
borderline of those regions. Most probably, this means 
that the model was more sensitive to thinning patterns of 
gray matter than to equally distributed volume reduction. 
However, our findings have to be seen as preliminary, 
as we only assessed this analysis in one normal control 
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Fig. 3 Example relevance maps obtained for different people. Top row: Alzheimer’s dementia patients, middle row: patients with mild cognitive 
impairment, bottom row: cognitively normal controls
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participant due to the computational effort, and there-
fore, it requires more extensive research in future studies.

Based on the extensive knowledge about the effect of 
Alzheimer’s disease on brain volume as presented in 
T1-weighted MRI scans [15, 16], we selected a direct 
quantitative comparison of relevance maps with hip-
pocampus volume as a validation method. Here, we 
obtained very high correlations between hippocampus 
relevance scores and volume (median correlation r = 
−0.84), underlining the clinical plausibility of learnt pat-
terns to differentiate AD and MCI patients from con-
trols. In addition, visual inspection of relevance maps 
also revealed several other clusters with gray matter 
atrophy in the individual participants’ images that con-
tributed to the decision of the CNN (Figs. 2 and 3). Böhle 
and colleagues [14] proposed an atlas-based aggrega-
tion of CNN relevance maps to be used as “disease fin-
gerprints” and to enable a quick comparison between 
patients and controls, a concept that has also been pro-
posed previously for differential diagnosis of dementia 
based on heterogeneous clinical data and other machine 
learning models [47, 48].

Notably, the CNN models presented here were solely 
based on the combinations of input images with their 
corresponding diagnostic labels to determine which 
brain features were diagnostically relevant. Traditionally, 
extensive clinical experience is required to define rel-
evant features (e.g., hippocampus volume) that discrimi-
nate between a clinical population (here: AD, MCI) and a 
healthy control group. Also, typically, only few predeter-
mined parameters are used (e.g., hippocampus volume or 
medial temporal lobe atrophy score [15, 16]). Our results 
demonstrate that the combination of CNN and relevance 
map approaches constitutes a promising tool for improv-
ing the utility of CNN in the classification of MRIs of 
patients with suspected AD in a clinical context. By refer-
ring back to the relevance maps, trained clinicians will be 
enabled to compare classification results to comprehen-
sible features visible in the relevance images and thereby 
more readily interpret the classification results in clini-
cally ambiguous situations. Perspectively, the relevance 
map approach might also provide a helpful tool to reveal 
features for more complex diagnostic challenges such as 
differential diagnosis between various types of dementia, 

Fig. 4 Mean relevance maps for Alzheimer’s dementia patients (top row), patients with mild cognitive impairment (middle row), and healthy 
controls (bottom row) for the DELCODE validation sample. Relevance maps thresholded at 0.2 for better comparison
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for instance the differentiation between AD, frontotem-
poral dementia, and dementia with Lewy bodies.

CNN performance
As expected, CNN-based classification reached an excel-
lent AUC  ≥ 0.91 for the group separation of AD com-
pared to controls but a substantially lower accuracy for 
group separation between MCI and controls (AUC  ≈ 
0.74, Table  3). When restricting the classification to 
amyloid-positive MCI versus amyloid-negative controls, 
group separation improved to AUC  = 0.84 in DELCODE, 
highlighting the heterogeneity of MCI as a diagnostic 
entity and the importance of biomarker stratification 
[1, 2]. In summary, these numbers are also reflected by 
the recent CNN literature as shown in Table 1. Notably, 
[27] reported several limitations and issues in the perfor-
mance evaluation of some other CNN papers, such that 
it is not easy to finally conclude on the group separa-
tion capabilities of the CNN models in realistic settings. 
To overcome such challenges, we validated the models 
on three large independent cohorts (Table 3), providing 

strong evidence for their generalizability and for the 
robustness of our CNN approach.

To put the CNN model performance into perspective, 
we compared the accuracy of the CNN models with the 
accuracy achieved by assessing hippocampus volume, the 
key clinical MRI marker for neurodegeneration in Alzhei-
mer’s disease [1, 2]. Interestingly, there were only minor 
differences in the achieved AUC  values across all samples 
(Table 3). The MCI group of the ADNI-3 sample, which 
yielded the worst group separation of all samples (AUC  
= 0.68), was actually the group with the largest average 
hippocampus volumes and, therefore, the lowest group 
difference compared to the controls (Table  2). Obvi-
ously, our results here indicate a limited value of using 
CNN models instead of traditional volumetric markers 
for the detection of Alzheimer’s dementia and mild cog-
nitive impairment. Previous MRI CNN papers have not 
reported the baseline accuracy reached by hippocampus 
volume for comparison. However, as noted above, CNNs 
might provide a useful tool to automatically derive dis-
criminative features for complex diagnostic tasks where 

Fig. 5 Results from the occlusion sensitivity analysis. A gray matter volume loss of 50% was simulated in a cube of 30‑mm edge length. Each voxel 
encodes the derived values when centering the cube at that position. Top: probability of AD for the areas with simulated atrophy. Bottom: total sum 
of image relevance depending on simulated atrophy. Numbers indicate the y‑axis slice coordinates in MNI reference space
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clear clinical criteria are still missing, for instance for the 
differential diagnosis between various types of dementia.

Limitations
As already mentioned above, visual inspection of rel-
evance maps also revealed several other regions with 
gray matter atrophy in the individual participants’ 
images that contributed to the decision of the CNN. 
These additional regions were not further assessed, as a 
priori knowledge regarding their diagnostic value is still 
under debate in the scientific community [1, 2]. Also, we 
did not perform a three-way classification between AD 
dementia, MCI, and CN due to the limited availability 
of cases for training. Additionally, MCI itself is a het-
erogeneous diagnostic entity [1, 2]. Here, all the studies 
involved in our analysis tried to increase the likelihood 
of underlying Alzheimer’s pathology by focusing on 
MCI patients with memory impairment. But mark-
ers of amyloid-beta pathology were only available for 
a subset of participants such that we could not stratify 
by amyloid status for the training of the CNN models. 
However, we optionally applied this stratification for 
the validation of the CNN performances to improve the 
diagnostic confidence.

Future prospects
Several studies focused on CNN models for the integra-
tion of multimodal imaging data, e.g., MRI and fluoro-
deoxyglucose (FDG)-PET [17–19], or heterogeneous 
clinical data [49]. Here, it will be beneficial, to directly 
include the variables we used as covariates (such as age 
and sex) as input to the CNN model rather than per-
forming the variance reduction directly on the input 
data before applying the model. In this context, relevance 
mapping visualization approaches need to be developed 
that allow for a direct comparison of the relevance mag-
nitude for images and clinical variables simultaneously. 
Another aspect is the automated generation of textual 
descriptions and diagnostic explanations from images 
[50–52]. Given the recent technical progress, we sug-
gest that the approach is now ready for interdisciplinary 
exchange to assess how clinicians can benefit from CNN 
assistance in their diagnostic workup, and which require-
ments must be met to increase clinical utility. Beyond the 
technical challenges, regulatory and ethical aspects and 
caveats must be carefully considered when introducing 
CNN as part of clinical decision support systems and 
medical software—and the discussion of these issues has 
just recently begun [53, 54].

Fig. 6 Scatter plot and correlation of bilateral hippocampus volume and neural network relevance scores for the hippocampus region for the 
DELCODE sample (r = −0.87, p < 0.001)
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Conclusion
We presented a framework for obtaining diagnostic 
relevance maps from CNN models to improve model 
comprehensibility. These relevance maps have revealed 
reproducible and clinically plausible atrophy patterns in 
AD and MCI patients, with a high correlation with the 
well-established MRI marker of hippocampus volume. 
The implemented web application allows a quick and ver-
satile inspection of brain regions with a high relevance 
score in individuals. With the increased comprehensibil-
ity of CNNs provided by the relevance maps, the data-
driven and hypothesis-free CNN modeling approach 
might provide a useful tool to aid differential diagnosis of 
dementia and other neurodegenerative diseases, where 
fine-grained knowledge on discriminating brain altera-
tions is still missing.
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